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Preface

The Public Interest Energy Research (PIER) Program supports public interest energy
research and development that will help improve the quality of life in California by bringing
environmentally safe, affordable, and reliable energy services and products to the
marketplace.

The PIER Program, managed by the California Energy Commission (Energy Commission),
conducts public interest research, development, and demonstration (RD&D) projects to
benefit electricity and natural gas customers.

The PIER program strives to conduct the most promising public interest energy research by
partnering with RD&D entities, including individuals, businesses, utilities, and public or
private research institutions.

PIER funding efforts are focused on the following RD&D program areas:

Buildings End-Use Energy Efficiency

Energy-Related Environmental Research

e Energy Systems Integration

¢ Environmentally Preferred Advanced Generation

e Industrial/Agricultural/Water End-Use Energy Efficiency

¢ Renewable Energy Technologies

e Transportation
Functional Comparison between Predictions of a Chinook Salmon Model and Monitoring
Data in the Tuolumne River, California is the final report for the Testing and Improvement
of the ORCM Chinook Salmon Model project (contract number 500-02-004, MR035)

conducted by Oak Ridge National Laboratory. The information from this project contributes
to PIER’s Energy-Related Environmental Research program.

For more information about the PIER Program, please visit the Energy Commission’s
website at www.energy.ca.gov/pier/ or contact the Energy Commission at 916-654-5164.
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Abstract

This study sought to reduce uncertainty in estimates of Chinook salmon outmigration in the
Tuolumne River, California by (1) improving rotary screw trap (RST) estimates, and

(2) improving predictions of a particular salmon recruitment model, the Oak Ridge Chinook
Model (ORCM). The research team improved estimates of outmigrants based on RST
monitoring data and developed methods for evaluating ORCM predictions by comparing
relationships between model predictions and environmental covariates (referred to here as
“functional relationships”) with relationships between RST monitoring data and
environmental covariates. This report presents methods for comparing model predictions
with field estimates that can be used with data series that are autocorrelated and have gaps.
Our model-data comparison suggested two hypotheses. The first hypothesis is that the
density dependent mortality is weaker in the model than in the field. Examination of seining
estimates of fry abundance could determine whether this mortality occurs during
incubation or during the fry stage. The second hypothesis is that fish kills resulted in lower-
than-predicted juvenile survival in years 2000-2004. This hypothesis could be addressed by
examining this period for extreme river conditions. Finally, the capability to simulate
energy generation was added to the ORCM,, enabling it to quantify the effect of flow regime
on both salmon and energy.

Keywords: functional comparison, time series, Chinook salmon, energy generation, rotary
screw trap



Executive Summary

Introduction

Resource agencies in California and water agencies that generate hydropower are interested
in better understanding how their decisions about seasonal and annual patterns in river
flow will influence salmon production. The financial problems and energy deficits
experienced by California during the late 1990s highlight the importance of understanding
the loss of energy capacity associated with legal restrictions on flows. Better tools are
needed to quantify the costs and benefits associated with hydropower production in
California.

Purpose

Several models have been developed to predict the effects of hydropower operations on
Chinook salmon production in California rivers, but have not had the opportunity to
undergo a rigorous, iterative process of comparing predictions against field data, followed
by model refinement and also improved collection and/or interpretation of field estimates.
For example, when the Oak Ridge Chinook Model (ORCM) was developed in the mid-
1990s, there was no program to monitor outmigrating Chinook salmon in the Tuolumne
River. Since then, rotary screw trap (RST) data have been collected in this river and used to
estimate salmon production. However, the true numbers of outmigrants are uncertain due
to the low sampling efficiencies of RST data. The original purpose of this project was to
develop and apply methods to compare predictions of an existing model with new field
data, with the goal of reducing uncertainty in both model predictions and field-based
estimates. This study’s primary tool was a constructive “validation” that seeks to explain
model-data discrepancies via empirical models involving environmental covariates.

Project Objectives

The three goals of this project were to: (1) improve methods for estimating numbers of
outmigrating juveniles from RST data, (2) reduce uncertainty in ORCM predictions, and
(3) add the capability to estimate hydropower generation in ORCM, which will allow users
to determine the trade-offs between providing flows for energy production and providing
flows for salmon habitat

Project Outcomes
The following five project outcomes are highlighted:
1. Two methods for improving estimated production based on RST data are presented.

2. Methods and tools for functional comparison between model predictions and field
monitoring-based estimates are presented. These robust methods work for missing
data and time series data that are autocorrelated.

3. Future directions for improving ORCM predictions during some years are
recommended based on functional model-data comparisons. Results suggest



differences may be due to higher density dependent mortality than simulated or to
episodes of poor water quality with effects not represented adequately in the model.

4. ORCM now has the added capability to simulate energy generation, which will
permit the simultaneous evaluation of the effects of flow regimes on production of
salmon and energy.

5. The analyses presented illustrate the value of continued feedback between
environmental monitoring design and predictive model development. Such an
iterative process is an essential part of effective adaptive management.

Conclusions

Empirical modeling proved useful as a tool for imputing missing field measurements and
functional validation of a Chinook salmon model, ORCM. The timing of smolt outmigration
was similar between model and data. However, ORCM predictions of smolts per spawner
were much higher than RST-based estimates for some years. Our analysis suggested two
hypotheses to explain the differences in juvenile survival. Thus, a longer process of
monitoring, comparison, and refinement is needed (including a longer time series of field
data, preferably with higher capture efficiencies) to improve our understanding of salmon
smolt production in this river and to reap the benefits of the ORCM model as a predictive
tool.

Benefits to California

Providing environmentally sound energy and reliable energy are two goals furthered by
this research. This project started the process of testing and improving a model for
quantifying the change in Chinook salmon production and the change in hydropower
generation associated with regulated flow regimes. Results from this study could be used in
the future to consider maximizing both salmon and energy production. The improved
methods presented here should also reduce uncertainty in estimates of Chinook production
based on RST monitoring data.



1.0 Introduction

With its dry climate, California rivers serve many important functions and there is not
always enough water available for all. This study focuses on two important functions:
reproductive habitat for salmon and hydropower generation. The San Joaquin Basin in the
Central Valley represents a southern extreme of the distribution for fall-run Chinook
salmon. Although fall Chinook salmon are not currently listed as threatened or endangered
by the federal government, this species has been declining for many years in the San Joaquin
Basin (Yoshiyama 2000). Wetter years are considered good for California’s salmon because,
among other things, higher flows in fall and spring lower water temperatures. One strategy
that salmon biologists claim will help to recover Chinook salmon is to allocate higher flows
during times of year when they are needed to ensure successful reproduction.

On the other side of this picture, the state of California has a significant need for
hydropower. During the late 1990s, California experienced a sharp increase in energy prices
and periodic rolling blackouts when the supply of energy failed to meet the state’s demand.
One of the causes of this crisis was drought conditions; others were regulatory. The energy
deficits experienced by California highlight the importance of understanding whether or not
legal restrictions on regulated flows to benefit salmon would result in a significant loss of
energy capacity for the state.

As part of a hydropower license for the New Don Pedro project, a 10-year study was
instituted in the Tuolumne River to learn more about the influence of spring flows on
Chinook production. Monitoring of outmigrating Chinook salmon was started around 1995,
as a means of determining whether goals of increasing salmon production were being met.
Rotary screw traps (RST)! were the primary monitoring devices used during the 10-year
study. However, the traps do not operate every day, and daily totals must account for flow-
related changes in capture efficiency. Therefore, one goal of this study was to improve field
estimates of Chinook salmon outmigration, using statistical methods to impute estimates for
missing days and to better account for flow effects on efficiency.

One promising way to quantify alternative strategies for allocating water is to use a model
that can predict the effect of flow regimes on both salmon and hydropower. Several models,
including the Oak Ridge Chinook Model (ORCM), have been developed to predict the
effects of hydropower operations on salmon recruitment. Such models can help decision
makers understand how decisions about seasonal and annual patterns in river flow will
influence salmon production (Jager and Rose 2003). However, none of these models also
predicts the effects of flow regulation on hydropower generation. A second goal of this
project is to test and improve a quantitative tool for those making decisions about
California’s water, aquatic resources, and energy.

'A rotary screw trap (RST) is a floating device in which fish are trapped and held alive in a box for
collection.



1.1. Fall Chinook Salmon in the Tuolumne River

Fall Chinook salmon spend their adult lives in the ocean. At some point between age 2 and
5, adults migrate into rivers during the fall to spawn. Each female digs a redd (nest) in the
gravel river bottom. During courtship, she releases her eggs into her redd. She buries the
eggs after they are fertilized by one or more males. Eggs incubate through the winter, hatch
as alevins (non-feeding larvae) into inter-gravel spaces, and emerge from redds as fry (pre-
smolt juveniles) in the spring. Fall Chinook salmon fry feed on invertebrates along river
margins for the first month or two, and gradually move downstream. Fry may exit
tributaries in winter or spring to rear in the lower main stem and estuaries prior to
becoming smolts. During smoltification, juveniles become tolerant to saltwater and migrate
to the ocean. This study focuses on the Tuolumne River, a tributary of the San Joaquin River
(Figure 1). The LaGrange Dam, at 83.7 kilometers (km) above the confluence, blocks
upstream migration of adult salmon returning to spawn. Flows are regulated by the much
larger New Don Pedro Dam, just upstream.

Source: TID/MID 2005
Figure 1. Map of the Tuolumne River

1.2. Functional Validation

The predictive value of ecological models increases greatly when modeling is coordinated
with long-term field studies. This is especially true when the field studies focus on
measuring variables used by the model as input, or those that it predicts. An iterative
process of confronting models with data leads to reduced uncertainty in model predictions
(Hilborn and Mangel 1997).

The most common approach to model validation is to compare model predictions with field
observations and to test goodness of fit between them at different times or places (e.g.,



Smith and Rose (1995)). One problem with using formal statistical tests to compare models
and data is that a model with highly uncertain predictions can never be rejected. Another is
that such tests rarely suggest directions for future improvement in either the data or model.
Thus, Jager et al. (2000) suggested that statistical testing is a non-constructive approach to
model-data comparison.

Functional comparison, to see whether model and data follow similar relationships with
environmental variables, is more constructive because it reveals processes that are poorly
represented in the model (or measured in the field) and it suggests areas of improvement in
modeling or measurement. For example, this study used this approach to compare model
predictions and field estimates of net primary productivity at the national (U.S.) scale.
Results suggested that one of the models was exaggerating the response of net primary
productivity to precipitation (Jager et al. 2000).

This report compares model predictions of Chinook salmon recruitment with those
estimated from RST data in a California river. It initially focuses on two functional patterns
that have already been described for juvenile Tuolumne River Chinook salmon:
relationships with flow and density. The Turlock Irrigation District/Modesto Irrigation
District (TID/MID 2005) concluded that the timing of downstream movements by fry, but
not smolts, relate to flow. Earlier juveniles, called “fry,” have not begun the transformation
to tolerate saltwater, after which they are referred to as “smolts.” Most juveniles captured in
a low-flow year (2002) were captured after March, whereas most juveniles captured in
higher flow years (1998 to 2001) were captured earlier, in February and March. TID/MID
(2005) also reported a power relationship between fry density and spawner density the
previous fall.

1.3. History of the Oak Ridge Chinook Model

The Oak Ridge Chinook Model uses an individual-based modeling approach to predict the
influence of seasonal flow releases on fall and late-fall Chinook salmon recruitment in the
Tuolumne River, California (see Attachment). Originally conceived as a tool for comparing
alternative flow regimes proposed by stakeholders in the operation of New Don Pedro Dam
(Jager et al. 1997), ORCM has been used to examine optimal patterns in seasonal flows from
the perspective of Chinook salmon (Jager and Rose 2003). Both efforts yielded insights about
the relationships between flow, temperature, and successful reproduction of the two salmon
runs. Validation of some model predictions was possible; specifically growth patterns were
compared against seining data. Growth predictions compared well with those observed in
the field (Jager et al. 1997). Sensitivity analysis was used to identify critical variables for each
of several model predictions (Jager et al. 1997). At that time, the primary response predicted
by the model (the number of juvenile smolts outmigrating from the tributary) had not been
measured in the field and, thus, could not be compared with model predictions. Since the
initial model was developed, new monitoring data has become available.

In 1995, a settlement agreement was signed that modified the hydropower license for New
Don Pedro Dam on the lower Tuolumne River. An adaptive monitoring program was



implemented in 1996 that included monitoring of outmigrants for the period 1997-2004.
Here, these data are used to compare functional responses to environmental variables with
those followed by predictions of the ORCM.



2.0 Methods

Two goals of this project were: (1) to compare field and model results to reduce uncertainty
in ORCM predictions, and improve RST estimates; and (2) to permit energy-salmon trade-
offs to be quantified by adding the capability to estimate hydropower generation in ORCM.

Section 2.1 describes processing of field data and methods for ORCM model predictions.
Section 2.2 describes methods for comparing the magnitude and timing of smolt
outmigration predicted by the ORCM model and estimated from RST data. Subsequent
sections describe methods to compare functional relationships between outmigrant counts
and environmental variables, and methods for simulating hydropower generation.

2.1. Field Data

A research program monitors the production of fall Chinook smolts from the Tuolumne
River (see TID/MID 2005). This program includes monitoring of outmigrating juveniles
using rotary screw traps (Figure 2), which were installed in the Lower Tuolumne River by
the California Department of Fish and Game (CDFG) in 1995 (TID/MID 2005). Two 8-foot
diameter rotary-screw traps were operated in the lower Tuolumne River at the Grayson
(river mile (RM) 5)/Shiloh Bridge (RM 3.5) locations to monitor the number, size, timing,
and rate of fry and/or juvenile Chinook salmon emigrating from the Tuolumne River
(TID/MID 2005). The sampling gear is stationary in the river current and operates in the
upper part of the water column (TID/MID 2005). Each trap has an eight-foot diameter and
capture any fish that swim downstream into the mouth of the trap. These traps operate on a
subset of days, with a focus on what is believed to be the peak period of fall Chinook
salmon outmigration in April and May. The number of juveniles captured is recorded for
each time and date of operation, and the length is measured for a subset of individuals.
Although measurements began in 1995, the first two years of data were too sparse to
include. Only one trap was used in 1998.

Figure 2. Grayson rotary screw trap installed on the Lower Tuolumne River to sample
outmigrating Chinook salmon



Only a fraction of salmon juveniles that are moving downstream are captured in the traps.
To estimate the trap’s capture efficiency, a known number of hatchery juveniles are released
during field trials on dates with different flows. Trap efficiency is the ratio of the number
captured to the number released. This ratio has been found to decrease with river flow. In
addition, an adjustment is made for the proportion of the day when the trap is operated.

In summary, two adjustments are made to the data to obtain daily RST estimates. First, the
number counted during a given day is divided by the proportion of the day sampled to get
a daily total, Ni.Second, Nu is divided by trap efficiency, E:, which depends on flow, Q: in
cubic feet per second (cfs) (Equation (1)).

E =a-bin(Q,) (1)

Parameters a = 0.1464 and b = 0.0164 were fitted to data collected during field trials to assess
trap efficiency (TID/MID 2005). The CDFG provided the research team with a spreadsheet,
which calculated RST estimates for each day from flow.

Uncertainties associated with the RST estimates are high, because the trap efficiencies in the
Tuolumne River are low. A minimum efficiency of 10% is sometimes cited as a lower limit
for reliability. In the Tuolumne River, efficiencies are below this, even at moderate flows.

In the comparisons reported here, the research team improved estimation of efficiency at
high flows, incorporated juveniles with imputed lengths, and separated RST juveniles
smaller than and greater than 70 millimeters (mm). Each of these improvements is described
below.

The research team accounted for the fact that the model predicts fry and smolts, where
simulated juveniles become smolts when they reach 70 mm and have grown over a certain
number of degree days (sum of degrees C). However, days with the highest counts included
many juveniles that lacked length data. Because the team now required length information,
it imputed lengths for juveniles lacking length measurements by determining the length
frequency distribution for each day from measured individuals and applying these to the
unmeasured counts to assign fractions of unmeasured juveniles to each length class.

One problem with the linear model in Equation (1) is that it can produce very small, and
even negative, estimates of trap efficiency when flows are higher than those used to estimate
the parameters. Very small efficiencies, when used in the denominator, produce very high
RST estimates. In the first comparison, efficiencies at flows high enough to produce negative
efficiencies were set to one, which likely underestimated counts on these dates. In the
second round, the research team set efficiency estimates smaller than the minimum
efficiency observed during the trial, which occurred at a flow of 6,400 cfs (181 cubic meters
per second (cms)), to the observed minimum, Ewni» = 0.0027. An alternative solution would be
to fit a logistic model rather than a linear one.



2.2. Model Predictions

The ORCM (Jager et al. 1997; see the Appendix) is a spatially explicit and individual-based
model of fall chinook salmon recruitment in a river below a dam. The model links a
spatially explicit representation of river habitat with a biotic model of chinook salmon
reproduction, development, growth, and mortality. The river habitat changes seasonally
and includes important spatial gradients (e.g., temperature, predator densities) between
upstream spawning areas and lower reaches inhabited by juvenile salmon during
outmigration. The biotic component uses a daily timestep to simulate coexisting life stages,
as individuals grow, develop from one life stage to the next, move, and die. The ORCM
simulates the river phase of chinook salmon ecology, beginning with adults entering the
river to spawn. For each redd, the research team simulates the daily development and
mortality of egg and alevin lifestages. After emerging from redds, the daily development,
growth, mortality, and downstream movement of individual juveniles (fry and smolts) is
simulated, culminating in the migration of smolts from the river (i.e., recruitment).

The biotic events leading from upmigration of spawners to the outmigration of recruits are
simulated in a spatially explicit river habitat represented by a series of adjacent 1.6-km
segments differing in the proportion of riffle and pool habitat, temperature, and flow (at
confluences with tributaries or diversions). Simulated average daily water temperature in
each river segment is determined by allowing water released by the dam (about 12°C year-
round; FERC 1996) to equilibrate to the air temperature as the water travels downstream.
The simulated river temperature of each segment depends on daily air temperature, dam
release temperature, and flow rate, which controls the rate of travel downstream. Daily flow
in each segment is generated as part of the optimization procedure and used to drive the
ORCM.

The research team began by improving the simulation of downstream variation in water
temperature in the Tuolumne River using available data. The ORCM model requires daily
average flow and temperature data (water and air), and predicted downstream water
temperatures daily. The team obtained temperature and flow data for a variety of locations
in the Lower Tuolumne, using United States Geological Survey (USGS) daily data when and
where available, but supplemented with averages calculated from hourly temperature data
and recent data obtained from the California Data Exchange Center,2 which is maintained
by the California Department of Water Resources. The research team obtained recent, but
incomplete, temperature data at a larger number of sites on the river. These data were used
to calibrate a simpler model for spatial variation in temperature. Researchers compared the
fit of a variety of linear and non-linear regression models used to predict longitudinal
temperatures ("C) at all downstream locations (Tx) from release temperature at LaGrange
Dam (T:), air temperature (T.), distance downstream in km (x), and release flow in cubic
meters per second (m3s?) (Q). Equation (2) fit the best and replaced the original equation in
ORCM.

2 http://cdec.water.ca.gov/
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T, =by+T,+H(T,, ~T) (1-e ") 2)

Ideally, model validation is an iterative process in which feedback from comparison with
field data leads to improvements in the calibration or structure of a model. Here, the
research team completed two rounds of model-data comparison and iterated the process of
making model predictions and comparing them to data. The two versions of the model are
referred to as ORCM-I and ORCM-II. The study’s first objective was to adjust the average
number of outmigrants predicted by ORCM to match field estimates. The research team
started by using the same parameter values used in previous simulations (see the
Attachment). The team determined that ORCM outmigrant numbers tended to be higher,
and next, tried to determine during what lifestage survival was higher in the model than in
the field. ORCM predictions of egg-to-fry survival in Round I were higher (average = 0.57;
range: 0.21 to 0.79) than field estimates of survival to emergence and an empirical model
based on gravel permeability, which varied from 0.34 to 0.51 (TID/MID 2005). Although
other parameters influence egg-to-fry survival, the research team had no reason to modify
mechanistic factors, and therefore focused on baseline egg mortality as the parameter to
calibrate. For Round II, the team increased baseline egg mortality, eggm = 0.012, to match the
observed mortality. The team also observed that juvenile survival was higher. Juvenile
survival in the model is influenced by predation, temperature, and premature emigration.
The authors are confident in the study’s simulation of temperature-related mortality, and to
a lesser extent in estimates of premature migration, but less so in predation rates. In
addition, changes in the river have altered the density of warmwater predators (bass) and
spatial overlap between predators and Chinook salmon juveniles (TID/MID 2005). The
research team therefore increased the probability of capture for predators, pcap = 0.001 from
0.0001 using the simplified predation model (see the Attachment). The equations in which
these parameters are used are given in the Attachment. In the second round, the research
team also modified ORCM to reading in the proportion of female spawners in each year
rather than using the same sex ratio for all years. By doing this, the team hoped to refine the
predicted timing of outmigration.

2.3. Comparison of Outmigration Magnitude and Timing

The research team graphed the number of outmigrants on each day between the beginning
of March and early June. Different graphs are presented for each year and for each of the
two rounds. All sizes of juveniles, both fry and smolts, are included in these graphs.

24, Functional Comparison

Differences between the relationships observed in field data and model-predictions can
provide guidance in further improving processes in the ORCM model. This approach was
successfully used to evaluate three regional models for net primary productivity (Jager et al.
2000), and discovered that one model was over-responding to precipitation. Here, we
developed empirical relationships to describe the daily number of outmigrating smolts for
both the RST data and the ORCM predictions. We contrasted the coefficients of relationships
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between smolt numbers and key predictors, including degree-days, escapement (i.e.,
number of spawners counted the previous fall), and flows.

The research team fitted daily smolt numbers as a function of predictors that changed
within and among years for the seven years between 1997 and 2004. R software® was used
for the statistical analyses reported here. The team fitted one set of models to all the data,
keeping zero smolt counts (days when the traps were operating but caught no salmon), and
another set of models to the subset of days with non-zero smolt counts. The team added the
analysis with only non-zero counts, in part, to help satisfy distributional assumptions.
Interpretation of these models is also slightly different: the set of models fitted to days with
non-zero smolt counts predicts abundance, given that migration is occurring.

The annual production of saltwater-tolerant smolts that leave the river to migrate seaward
depends on the number of spawners or “escapes,” Esc, the previous fall. The research team
expects more smolts to be produced when there are more spawners to product them up to a
point. Beyond a certain number of spawners, “density dependent” factors cause the number
of offspring that survive to migrate downstream as smolts to reach a limit or even to
decrease. Examples of density-dependent mortality exist at all stages. Beginning with
reproduction, adults may interfere with one another during spawning. Adults that arrive on
the spawning grounds later might dig their nests (redds) for their eggs right on top of those
of previous spawners, which causes mortality of the earlier eggs. This is called
“superimposition” of redds. After hatching, larvae (called “alevins”) reside in the interstices
of the gravel riverbed. High alevin densities can reduce water quality by depleting
dissolved oxygen and high levels of ammonia (waste products). After emerging from the
gravels, juveniles (both fry and smolts) are exposed to predation. At high densities, smaller,
later-emerging fry have trouble competing for feeding territories. Consequently, more fry
remain small and vulnerable to predation when densities are high.* The Ricker function
(below) is one function that is typically used to represent this dependence on spawner
density. Equation (3) below shows a general or extended form that includes other,
potentially time-varying, environmental predictors, in linear function, fi(.), for calculating
daily smolt outmigrants, Yitfor each year i and day ¢.

Y = E _eb0+b1Esc,.+/;(.)+g

i,t Sci (3)

The research team linearized Equation (3), as shown in Equation (4), to obtain parameter
estimates and to examine the evidence for density dependence in daily smolt outmigrants,
Yit, where smolt counts are daily (indicated by subscript t) and the number of escapes is the
same within a year (indicated by subscript 7). To avoid taking the log of zero on days when

? The R Project for Statistical Computing. www.r-project.org/.

* However, at high juvenile densities, predators become saturated and are unable to eat as
large a fraction of available fry and smolts—an example of inverse density dependence.
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no smolts were observed and/or predicted, the research team added a one to the number of
smolts in datasets that included zero counts. The error term, ¢, is assumed normally
distributed with zero mean and variance-covariance matrix ). for the linearized equation
below.

Y _
log, (l—'J =b,+bEsc,+ f,(s)+&, &£NNO,Y) 4)
Esc

i

The research team evaluated the residuals of the models for the RST data to determine the
extent to which they followed an independent (i.e., no autocorrelation) normal distribution
with zero mean and a constant variance, which is assumed by linear regression. For
residuals with no autocorrelation, the expected correlation between two values separated by
one day would be the same as the expected correlation between two values separated by
one hundred days, which in both cases would be zero.

Analysis of the residuals indicated strong autocorrelation in the residuals of the models
examined. The research team therefore used generalized least squares to fit the Ricker
models described below. Generalized least squares allowed us to model and incorporate the
autocorrelation structure. The team used the exponential covariance model shown in
Equation (5) to model an exponential decay in autocorrelation over time. According to this
model, the expected correlation between pairs of residuals is smaller when they are more
days apart. Equation (5) was fitted to the residuals and used to construct the appropriate
variance-covariance matrix, X, and solve for the parameters of Equation (4). The final
estimate of A in Equation (5) is reported. The same procedure was used to solve each of the
extended Ricker equations to be described later.

C(At)y=e™ (5)

The following information is presented for each model:
e A Pearson correlation between predictions of outmigrating smolts,® Y, and either
RST or ORCM-II predictions. Squaring this value estimates the percent explained
variance.

e Akaike’s information criteria® (AIC) to compare models and the residual standard
error.

> Note that these are estimates of median outmigration, back-transformed from the log-
transformed ratios predicted by Equation 4. The mean can be estimated by adding half the
estimated error variance to the linear equation before taking its exponent and dividing by
Esci.

% Akaike’s information criterion (AIC) is an index that penalizes for the number of predictors
included in a model (Akaike 1974). In contrast, the R? always increases as more predictors
are added.
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o Estimated coefficients, and the probabilities associated with the T- test of a two-sided
hypothesis that each is zero.

e The estimated range of the exponential variogram model.

The research team expanded the function, f, in Equation (4) to include predictor variables
that represent within- and among-year variation in smolt counts. The team hypothesized
that within-year variation in smolt counts (i.e., timing) is related to the cumulative
temperature (degree days) since the beginning of the current year, DDiy, and DD;#, as
shown in Equation (6). Degree days reflect the physiological time that juveniles have to
develop into smolts, which is largely controlled by temperature.

Yo+l 2
log, e |~ by+b,Esc; +b,DD,, +b,DD, " + ¢ (6)

i

In addition to temperature and escapement, flow could also explain variation in smolt
production. The research team considered a variety of models involving lagged flows, with
lags between 5 and 21 days. However, the team focused mainly on the following flow
variables, which have one value for each year, i:

1. Qfall - fall flow (that from the previous October or November).

2. Quinter - winter flow (December to February).
3. Qspring - spring flow (March to June).
4

Qcum - cumulative flow between February 15 of the current year and the date of
outmigration.

5. Qsd - standard deviation in flow between February 15 and the date of outmigration.

¥, +1 2
log, Z =b, +b Esc, +b,DD,, +b,DD,
SC;

1

(7)
+ b4Qfall,i + bSQwinter,i + bGQspring,i + b7chm,i + bSQsd,i +é

The research team considered models with flow at all lags up to 21 days (but no other flow
variables) and one lag at a time. The dynamic linear modeling package, available in the R
software, was used for time-series regression analysis of models involving temporally
lagged flows. These lagged-flow models were not predictive and results are not shown here.
In the model with all lags, the team found only one or two lags to be significant, with little
overall predictive power. The particular lags that were significant depended highly on
which other lags were included, suggesting high autocorrelation in flow. Considered
individually, flow lagged by 10 days was the most significant when added to Equation (6)
for the RST data (zero counts included).
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The research team identified a different “best” model for the RST data by removing
predictors from Equation (7) that were not significant and examining correlations among
parameter estimates. The team favored models with the lowest AIC. The model in Equation
(8) was selected for RST data with dates having zero counts removed.

Y
log, ( - ] =by ;DD +b,0D," + 5,0, +b,(20), 405 (X0u), +6 (®)

i

This study’s functional validation compares the fitted models for RST data to the
corresponding models for ORCM predictions. The research team’s goal is to identify
differences in coefficients that reflect differences in environmental responses of model-
predicted and field-estimated smolt numbers.

2.5. Imputing RST Estimates

The date of peak outmigration clearly changes from year to year, and appears to be driven
by temperature-related development of smolts more than by flow and other environmental
variables. Predicting this more precisely might be useful for tailoring the dates of pulse flow
releases, which are costly in terms of foregone energy production. The significant degree-
day relationship in Equation (4) can be used to find the degree days (DD) when
outmigration is at a peak by calculating the derivative of Y with respect to DD for
coefficients for the RST data. The derivative was set to zero, and solved for DD* = -b2/ (2 bs),
which holds for the general case also (i.e., where the Escapement term is replaced by f(-)).
For demonstration purposes, the research team estimated DD* using coefficients from
Equation (6) fitted to RST data excluding zero counts.

In addition, any of the empirical relationships could be used to impute smolt counts for
days when the rotary screw traps were not operating. The research team obtained imputed
totals using Equation (6) fitted to RST data excluding zero counts. Imputed values obtained
in this manner were used to obtain annual totals, but not for functional validation.

2.6. Energy Generation

The research team’s final task was to add the capability to estimate hydropower generation
in ORCM, making it possible to evaluate tradeoffs between hydropower generation and
salmon production. The team combined annual flow data for the Tuolumne River below
LaGrange Dam (USGS gage 11289650) with annual generation data from the U.S.
Department of Energy’s EIA-860 database (generator id’s pcode =439 and 440 for LaGrange
and the New Don Pedro). A linear relationship between river flow and electricity generation
is suitable for dams that produce electricity with a fixed hydraulic head (Kotchen 2006). The
research team fitted a linear model to explain annual generation as a function of total annual
river flow. The coefficients were then input to the ORCM model and used to estimate daily
generation from daily flows.
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3.0 Results

3.1. Comparison of Outmigration Magnitude and Timing

ORCM predictions in Round I were much higher than RST estimates of smolt outmigration
for all years. After reducing egg survival and increasing predation on fry, ORCM-II
predictions were closer to RST estimates for three years—1998, 1999, and 2004 —but the
totals for 2000-2003 remain much higher (Figure 3). RST estimates suggest fewer than 10
smolts emigrated per spawner in all years, whereas the model predicted a much more
variable number of smolts per spawner, from 1 to 62 (Figure 3). Spawner abundance
measured in the Tuolumne River was highest in the fall of 2000 (17,873), lowest in 2003
(2,961) and similar in other years (7,125-9,222) (TID/MID 2005).
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Figure 3. Comparison of total smolt outmigrants (bars) predicted by ORCM in rounds
| and Il and those estimated from RST data during the spring of 1998 to 2004. The line
depicts average spring flow.

The simulated peak date of smolt outmigration compared well (within a week) with RST
data for four of the seven years (the spring of 1998 and 2002-2004). During the period 1999-
2001, predicted average outmigration date differed by up to 17 days, with no clear bias
earlier or later. The average outmigration julian date, weighted by numbers of smolts, are
shown in Table 1, and include all ORCM predictions. Statistics in Table 1 include ORCM
predictions for all dates. ORCM-II predicted outmigration peaked earlier than RST in the
spring of 1999 and 2000, later in 2001, and during a similar timeframe in the later years.
Timing did not change much between the two rounds of validation, except for the spring of
2000.
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Table 1. Average julian date of smolt outmigration for RST data and ORCM-II
predictions, which included all dates (not just those with RST data)

Year of spring chzzydsstrjw grl:gilc\:/‘{eg Difference (d)
1998 103 106 3
1999 115 101 -14
2000 112 96 -16
2001 108 125 17
2002 116 116 0
2003 115 110 -5
2004 110 116 6
3.1.1. Functional Comparisons

This section compares results for the non-flow model (Table 2). Next, it compares results for
a “complete” model that includes flow variables (Table 3). Finally, it shows parameters for
the “best” model for RST data, as determined by AIC and examination of correlations
among the predictors.

3.1.2. Functional Responses to Degree Days and Escapement

Functional relationships produced by the ORCM-II model and RST data showed similarities
and differences. The regression analysis of RST data and ORCM-II predictions using
Equation (6) showed several similarities. Both model and field data showed a significant
quadratic (parabolic) response to degree-days when zero counts were included (Table 2).
Degree days (cumulative temperature) are an important predictor, presumably because of
its ability to predict the onset of smolt outmigration and daily variation in smolt
outmigration (timing).

Autocorrelation was also a persistent feature of both field estimates and model predictions
of outmigration, and residuals of regression models to predict outmigration. However, the
range of the exponential correlation function, which measures the length of time within
which residual errors are autocorrelated, error differed, with autocorrelation over a shorter
range for RST data than for ORCM-II predictions (1.4 and 15.5 days, respectively).

An important feature of the Ricker model is its ability to represent density-dependent
effects, i.e., a decrease in smolt production at high spawner densities due to superimposition
of redds and other mortality risks that increase with density. The research team considers
density dependence to be significant when the coefficient bs (Table 2) is significantly less
than zero (p < 0.05). RST and ORCM-II showed different responses to spawner density
(Table 2). When fitted to Equation (6), the “Escapement” coefficient fitted to the RST data
showed the expected negative sign, whereas this term had a positive sign model for ORCM-
II predictions. This indicates a decrease in RST outmigrants at high spawner densities, but a
stronger-than-linear positive response to escapement in ORCM-II predictions over the range
of densities simulated.
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Table 2. Comparison of empirical regression models for log.(smolts / escapement) shown in Equation (6) for RST-estimated

and model-predicted smolt outmigrants in the lower Tuolumne River with and without zero counts included

RST RST ORCM-II ORCM-II
Coefficient Variable (zeroes P<|T| (zeroes P<|T| (zeroes P<|T| (zeroes P<|T|
included) excluded) included) excluded)
by Intercept -12.7922 0.0000 | -5.7428 0.0000 | -7.0344 0.0000 | -2.9171 0.3712
b, DD 0.01250 0.0002 | 0.00550 0.0002 | 0.00325 0.0332 | 0.00066 0.8845
b, DD’ -0.000004 | 0.0001 | -0.000002 | 0.0001 | -0.000001 | 0.0342 | 0.0000004 | 0.8081
bs Escapement | -0.000013 | 0.7285 | -0.00010 | 0.0123 | -0.00011 | 0.2765 | 0.000027 0.7309
Correlation 0.2286 0.2287 0.2217 0.5466
Residual SE | 1.1308 1.1308 3.209 1.8171
Residual df 542 388 1102 312
AIC 2114.0 1075.43 3385.25 896.02
Range (d) 1.1 2.2 16.5 7.1

DD = degree days; Residual SE = residual standard error; Residual df = residual degrees of freedom; Range (d) = range
parameter value of the exponential autocorrelation function; P<|T| = probability of a T-statistic < the absolute value of T.
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Table 3. Comparison of the full empirical regression models for log.(smolts / escapement) shown in Equation (7) for RST-
estimated and model-predicted smolt outmigrants in the lower Tuolumne River with and without zero counts included

RST RST ORCM-II ORCM-II
Coefficient Variable (zeroes P<|T| (zeroes P<|T| (zeroes P<|T| (zeroes P<|T|
included) excluded) included) excluded)
by Intercept -16.491 0.0000 | -8.8638 0.0000 | -15.1496 0.0000 | -6.9706 0.2804
b DD 0.0178 0.0000 | 0.00724 0.0000 | 0.01714 0.0001 | 0.00789 0.2817
b, DD’ -0.0000006 | 0.0000 | -0.000002 | 0.0001 | -0.000006 | 0.0000 | -0.000002 | 0.3259
bs Escapement | 0.0000017 | 0.8644 | -0.000027 | 0.7411 | 0.000030 0.8609 | 0.000464 | 0.0011
by Fall flow 0.000082 | 0.9390 | 0.000376 | 0.6633 | -0.001114 | 0.6350 | -0.00592 0.0010
bs Winter flow | -0.000023 | 0.4218 | -0.000026 | 0.3165 | -0.000244 | 0.7206 | -0.000643 | 0.2454
b Spring flow 0.000077 | 0.1741 | 0.000190 | 0.0001 | -0.000033 0.9000 | 0.000166 | 0.3187
b, Cum. flow -0.000112 | 0.4755 | -0.000329 | 0.0071 | -0.000312 | 0.4280 | -0.000341 | 0.5447
bg SD flow 0.00452 0.8501 | 0.01507 0.4610 | 0.07642 0.1721 | 0.16636 0.0014
Correlation 0.2363 0.3414 0.6785 0.7672
Residual SE 1.737 1.0657 3.1815 1.3237
Residual df 436 380 669 301
AIC 1849.33 1135.76 2424.0 926.31
Range (d) 0.9 1.9 10.7 3.6

SD flow = standard deviation in flow.




3.1.3. Functional Responses to Flow Variables

Next, the research team examined Equation (7), which included a set of summary flow
variables in addition to degree days and escapement. These models cannot be compared
with those in Table 2 using AIC because a subset of days are dropped when variables “Cum
flow” and “SD flow” are added.

In the models with zero counts included, none of the flow variables was significant for
either the RST data or ORCM-II predictions (Table 3). In models fitted to data with zero
counts excluded, a few flow variables became significant, suggesting that flow variables
influence the number migrating on a given day, but not whether or not migration occurred.
Equation (7) includes some predictors that are significant for one and not the other (RST
versus ORCM-II). These differences are the focus of this study’s validation. Spring flow and
cumulative spring flow were significant predictors for RST outmigrants, but not for ORCM-
IT (Table 3). Fall flow and the standard deviation in flow since February 15 (SD flow) were
significant predictors for ORCM-II, but not for RST outmigrants (Table 3). Finally, it is noted
that escapement, which played a significant role in Equation (6), was not important in the
full models that included flow variables (Table 3). This suggests that the effects of
escapement were correlated with, and replaced by, other predictors (e.g., the correlation
between parameter estimates for escapement and fall flow was -0.764).

The “best” RST model included degree-days, spring flow (total and cumulative), and
variation in flow (Table 4). Note that the three flow variables do not greatly increase the
predictive capability, as measured by the correlation, over that in the model with just degree
days and escapement (Table 2).

Table 4. “Best” empirical regression models for loge(smolts / escapement)
shown in Equation (8) for RST-estimated smolt outmigrants in the lower
Tuolumne River (zero counts excluded)

Coefficient Variable RST P<|T]
bo Intercept -8.2961 0.0000
b, DD 0.006633 0.0001
b, DD” -0.000002 0.0002
by Spring flow 0.000173 0.0000
bs Cum. flow -0.000267 0.0033
b, SD flow 0.013277 0.1263

Correlation 0.3079
Residual SE | 1.038
Residual df 380
AIC 1081.54
Range (d) 1.9
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3.2. Imputing RST Estimates

First, the research team proposes that the correction for catchability as a function of flow can
be improved by using the maximum flow that occurred during efficiency tests. In addition,
there is some question about the Modesto flow data, which are quite a bit higher than those
provided by USGS. The team applied the first correction (but not the second) before running
these analyses. Second, the team estimated the degree days at peak outmigration from fitted
parameters for RST data as 1,563 degree days by solving for the optimal value in Equation
(6) with coefficients derived from RST data with zeroes included (Table 2). Third, the team
used one of the models developed as part of this study’s validation, a Ricker model
involving previous-fall escapement and degree-days, to impute rotary screw trap estimates
for missing days (Figure 4). Using the same model as above, the team estimated the
following annual totals: 5,244 in 1997; 35,510 in 1998; 27,954 in 1999; 51,025 in 2000; 36,253 in
2001; 14,695 in 2002; and 15,264 in 2003.

3.3. Energy Generation

The linear relationship, Generation (MWh) = 295,807 + 7814.1 Flow (cms) explained 77% of
variation in annual generation at the New Don Pedro and La Grange projects between 1970
and 2003. The research team incorporated this relationship in ORCM to allow simultaneous
prediction of salmon production and hydropower generation. To scale from annual to daily
flows, the team divided the intercept by 365 days. For linear relationships such as the one
above, disaggregation does not introduce error (O’Neill 1979). Figure 5 shows the
relationship between flow and generation over the period of study.
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Figure 4. Cumulative estimates of outmigrants > 70 mm in size based on rotary screw
trap data collected by the California Department of Fish and Game. The black shaded
area shows the additional estimated Chinook smolt production using the imputation
method described here, and the grey shaded area shows the cumulative production
without imputing missing dates.
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Figure 5. Relationship between ORCM-simulated generation and cumulative river flow
over the 330 days simulated by the model in each year
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4.0 Discussion

Three objectives of this study were: (1) to improve RST estimates of outmigrating juveniles,
(2) to reduce uncertainty in ORCM predictions, and (3) to add the capability to estimate
hydropower generation in ORCM, which will allow both energy production and salmon
production associated with a given flow regime to be predicted.

This study’s first objective was to reduce uncertainty in RST estimates of annual numbers of
outmigrants. The empirical relationships presented earlier as part of the functional
validation were useful for pursuing this objective. First, the research team used one
relationship to solve for the degree-days at peak smolt outmigration, which could be used to
fine-tune the timing of pulse flows. Second, the team used one relationship to impute
outmigrant counts on dates when the rotary screw traps did not operate. In practice, these
relationships should first be verified using cross-validation against new data not previously
used to estimate parameters.

This study’s second objective was to reduce uncertainty in ORCM predictions. Because the
research team only completed two rounds of model comparison, this objective was not fully
accomplished. However, the team made a start and developed methods needed to continue
the effort. Discrepancies between model-predicted survival and that suggested by field
sampling remain unacceptably large for some years. This study’s comparison of timing of
outmigration showed differences in some years, but not others. Because ORCM uses the
same temporal distribution of spawners in fall of each year, timing of outmigration in the
model does not reflect year-to-year differences that are likely to be observed in the field.

The consequences of extreme weather events and density dependent mortality are two
possible reasons for the discrepancy between the model and data. This study’s functional
analysis suggests that density dependent mortality is higher in the field than simulated in
the model. Another line of evidence suggesting that the “missing” mortality must be density
dependent is that increased density-independent mortality would result in no smolt
outmigrants in the three years now predicted reasonably well: 1998, 1999, and 2004. Two
sources of density-dependent mortality that are now simulated by ORCM are redd
superimposition and predation on fry. However, the parameters controlling the strength of
each of these density dependent factors may need tuning.

It is difficult to say from the RST data whether the additional, unpredicted mortality occurs
during the egg or fry life stage. The RST data are not useful for addressing this question
because fry outmigration was not sampled in most years. The most complete early sampling
occurred in 2000 and 2002. During these two years, ORCM-II predicted 5-times (in 2000) and
100-times (in 2002) more fry outmigrants than were estimated based on the rotary screw
trap data. Thus, higher egg and alevin mortality may have occurred during these two years
than the average value estimated in the field and used by us as input to the model.
Increasing egg mortality in the model to correspond to those in field tests was not sufficient
to produce such low numbers (simulated egg-to-fry survival ranged from 0.06 to 0.20).
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Juveniles in the Tuolumne River might grow slower at high densities, and thus risk higher
exposure to predation for a longer period. To test the hypothesis that density-dependent
mortality is caused by slower growth, growth rates in the different years could be
compared, to see whether there is evidence in the RST and seining data of slower growth at
high densities, and whether density-related differences in growth are tracked by growths
simulated in ORCM. Preliminary comparison of an annual growth index and seined
juvenile densities do not suggest an inverse relationship (TID/MID 2005; also Figure 6).
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Figure 6. Juvenile growth index (mm/d) showed no relationship with seining density

Another possibility is redd superimposition, which is known to occur in this river (TID/MID
2005). To address superimposition, we could consider whether the spatial distribution of
spawners is more concentrated near the upstream dam, leading to higher levels of
superimposition than is currently simulated in ORCM.

If the research team were to continue the process of iterative improvement, identifying
density-dependent influences would be the next focus. The most powerful test of density
dependence requires approximately 16 years of population estimates (Dennis and Taper
1994).

Flow influences salmon directly through velocity and depth (i.e., physical habitat), and
indirectly, through temperature —water released by the dam is, in general, colder than air in
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fall and spring and warmer than air in winter. This study’s results suggest that temperature-
related effects of flow are more important than the direct effects of flow as predictors of
outmigration time. Neither model nor data showed a large increase in predictability after
including flow variables, none of which were significant in models fitted to data including
zero counts. However, patterns in the models fitted to data excluding zero counts suggest
that flow variables correlate better with overall abundance than with timing. In these data,
the research team did observe differences between the RST estimates and model predictions:
ORCM-II predictions showed a weaker response to spring flow and cumulative spring flow,
and a stronger response to fall flow and variation in spring flow, than was observed in the
RST data. In a next round of model validation, these differences might be examined for clues
to model improvement. In addition, there is always the possibility that observed effects of
spring flow on RST data reflect the effects of correcting RST counts for low efficiency at high
flow. In future efforts, it would be instructive to include an index of maximum temperature
as an additional predictor to determine whether ORCM predictions of temperature-related
mortality are sufficiently accurate.

Analysis of residuals revealed that the episodic nature of outmigration, combined with the
presence of many small (and zero) counts, makes prediction difficult. One would think that
a hierarchical model including a logistic function for the presence-absence of outmigrants
and a separate model to predict counts, given the presence of outmigrants, would improve
prediction, but this was not found to be the case in this study’s preliminary assessment.
Even residuals of the “best” linearized equation for RST data show the difficulty of
predicting many small counts and few large counts using the predictors available (Figure 7).
This suggests that the extended Ricker model does not represent the error structure of these
data particularly well. Others have encountered the same problem in dealing with Chinook
migration data (e.g., Zabel et al. 2005).

Several studies have quantified relationships between Chinook salmon migration rate and
river conditions, such as flow, temperature, and turbidity (Connor et al. 2003; Smith et al.
2003). However, the research team identified only one other study that attempted to predict
the numbers migrating at different times (i.e., timing of migration). Trepanier et al. (1996)
developed a time-series model to predict the upstream migration of landlocked Atlantic
salmon as a function of river discharge and water temperature. The authors argued for a
need to include autocorrelation in prediction and demonstrated the facts that model
significance and the significance of individual predictors are overestimated by ordinary
least squares models that assume residuals are uncorrelated.
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Figure 7. Residuals from the model shown in Equation (8) for log.(RST-estimated
smolt outmigrants/Escapement) over time (1997-2004)

The residuals in the present study also showed considerable autocorrelation: Figure 8 shows
the average correlation between pairs of values separated by the number of days on the
x-axis. The research team was able to account for autocorrelation in the analysis by using
generalized least squares. This study’s analyses of time series models with lagged variables
suggested that models including earlier counts could substantially improve predictions and,
consequently, whiten (i.e., reduce autocorrelation among) the residuals. In the authors’
opinions, it is unlikely that such feedback could be provided quickly enough to be useful in
practice, and model-data differences in autocorrelation would not be easy to interpret for
purposes of functional validation.

This study’s third objective was to calculate energy production in the ORCM model. The
research team met this objective by developing an equation that predicts energy generation
from flow based on historical data from the USGS and the U.S. Department of Energy’s
Energy Information Administration (EIA). This equation was incorporated into the ORCM
model and will make it possible to quantify the flow-related trade-offs between salmon
production and energy production. Flow-based predictions of generation could be refined
by incorporating reservoir elevation, which determines the “head” (i.e., the vertical distance
between the water surface and the turbines). The relationship presented here predicts well
on an annual basis, and the authors are confident that distributing the energy generation
across days based on flow results in accurate predictions.
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Figure 8. Temporal autocorrelation in residuals from the model given by Equation (8)
for RST data excluding zero counts. The x-axis shows the lag in days and the y-axis
shows the autocorrelation function, ACF.

The research team did not attempt to estimate the value of hydropower generation. Stewart
(1997) estimated that each acre-foot of water diverted through turbines in the Sierra-Nevada
region of California produces $15 of electric power valued at a wholesale power rate of

2.5 cents/kilowatthour (kWh). It would be difficult to incorporate such a fixed conversion
because of the temporal variation in markets and demand-driven variation in price.
Hydropower is typically of higher value during hours of peak demand (daytime) to offset
the cost of buying power from fossil fuels or other sources. In future, seasonal variation in
price could be incorporated to estimate hydropower revenue.
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5.0 Conclusions

The approach used by this study will eventually reduce uncertainty in model predictions
and field estimates by improving understanding of model-data discrepancies. Both the
model and data involved in this study are characterized by high uncertainty. Low capture
probabilities increase the uncertainty in RST-based estimates, which are obtained by
statistically cloning one captured fish to represent hundreds that were not caught. This
makes it difficult to know with confidence how many outmigrants exited the river in a
given year. On the model side, ORCM predictions vary considerably from year to year, a
phenomenon not observed in the RST estimates. Because only two rounds of comparisons
were completed, this study has reached the stage of highlighting uncertainties in model
predictions, while somewhat reducing uncertainty in RST estimates.

As one result of this study, the research team provided guidance for the next steps in
iterative model improvement. Two hypotheses that may explain why observed survival in
the field was lower than predicted in half the years are (1) under-representation of density-
dependent mortality in the model, and (2) fish kills due to factors not represented, or not
adequately represented, in the model (e.g., episodes of low dissolved oxygen, high
temperature, or contaminants). The first hypothesis can be tested using other sources of
information—in particular seining survey data. Average sizes of salmon in the seining data
should indicate when migration is likely to occur, and the relationship between fry and
smolt abundance in the river and the number of outmigrating smolts captured in RST traps.
A decoupling between these two could indicate a high, density-dependent mortality acting
on fry, whereas a strong positive relationship between fry and smolts, combined with a
weak relationship with spawner abundance, would suggest that density-dependent
mortality during the egg stage is important. One could begin to examine the second
hypothesis by adding maximum temperature over some previous time interval as a
predictor in the functional comparison. Although temperature-related mortality is
simulated by ORCM, the lethal thresholds used may not adequately account for associated
changes in dissolved oxygen. Scouring mortality acting on redds during extreme flow
events is another possible factor that may be underrepresented.

The research team found empirical models to be useful, both as a means of functionally
validating and improving the model, and as tools for imputing missing field measurements.
The team used one empirical model to impute missing RST estimates, and the same could be
done for dates on which flows are high, leading to very low capture efficiencies. The
methods demonstrated here can be used in future to evaluate other recruitment models
against rotary screw trap data for this river and other rivers in California.

Development of predictive models of salmon populations is a very challenging task,
because the dependent variables are responding to multiple environmental drivers in space
and time. Long-term environmental monitoring data are essential to the development
process. However, if monitoring data are to be useful to model development, they should be
designed with that use in mind. An ongoing process of iterative improvement in both
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models and monitoring can be achieved if they are seen as interconnected and managed as
such. The Tuolumne River and other tributaries of the San Joaquin River offer important
opportunities for improved fish management if we can learn from monitoring and modeling
experiences and integrate them more closely.
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7.0 Glossary

ACF
AIC
CDC
CDFG
DD
DOE
Energy Commission
EIA
GLS
MID
ORCM
PIER
RD&D
RST
TID
USGS

Autocorrelation function

Akaike’s information criteria

California Data Center

California Department of Fish and Game
degree days

U.S. Department of Energy

California Energy Commission

Energy Information Agency (U.S. Department of Energy)
generalized least squares

Modesto Irrigation District

Oak Ridge Chinook salmon Model

Public Interest Energy Research

research, development, and demonstration
rotary screw trap

Turlock Irrigation District

U.S. Geologic Survey (Department of Interior)
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Attachment

Designing Optimal Flow Patterns for Fall Chinook Salmon in a
Central Valley, California River

This attachment is availble in a separate volume.



